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THE BULLETIN OF SYMBOLIC LOGIC 

Volume 2, Number 2, June 1996 

THE DISCOVERY OF MY COMPLETENESS PROOFS 

LEON HENKIN 

Dedicated to my teacher, Alonzo Church, in his 91st year. 

?1. Introduction. This paper deals with aspects of my doctoral dissertation1 
which contributed to the early development of model theory. What was of 
use to later workers was less the results of my thesis, than the method by 
which I proved the completeness of first-order logic-a result established by 
Kurt Godel in his doctoral thesis 18 years before.2 

The ideas that fed my discovery of this proof were mostly those I found in 
the teachings and writings of Alonzo Church. This may seem curious, as his 
work in logic, and his teaching, gave great emphasis to the constructive char- 
acter of mathematical logic, while the model theory to which I contributed 
is filled with theorems about very large classes of mathematical structures, 
whose proofs often by-pass constructive methods. 

Another curious thing about my discovery of a new proof of G6del's 

completeness theorem, is that it arrived in the midst of my efforts to prove 
an entirely different result. Such "accidental" discoveries arise in many parts 
of scientific work. Perhaps there are regularities in the conditions under 
which such "accidents" occur which would interest some historians, so I 
shall try to describe in some detail the accident which befell me. 

Received November 17, 1995,and in revised form, January 4, 1996. 
This paper was presented on August 24, 1993, at the XIXth International Congress of 

History of Science, held in Zaragoza, Spain. It was included in Symposium 6 of the Congress, 
Histoire de la theorie des modeles, organized by Hourya Sinaceur of CNRS, Paris. I am 

grateful to Dr. Sinaceur for inviting me to participate in the Symposium and facilitating my 
attendance at the Congress. 

'The dissertation has never been published. It is entitled The completeness of formal 
systems, and was submitted to Princeton University in June, 1947. The contents are described 
below, in Section 3 of this paper. Parts were rewritten for later publication; see [Henkin, 
1949], [Henkin, 1950], [Henkin, 1953], in the References at the end of this paper. 

2Kurt Godel's dissertation was submitted to the University of Vienna in 1929. It was 
re-written later that year for publication, [Godel, 1930]. The text of the original dissertation 
was published in Godel's collected works, [Feferman, 1986]. 
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A mathematical discovery is an idea, or a complex of ideas, which have 
been found and set forth under certain circumstances. The process of dis- 
covery consists in selecting certain input ideas and somehow combining and 
transforming them to produce the new output ideas. The process that pro- 
duces a particular discovery may thus be represented by a diagram such as 
one sees in many parts of science; a "black box" with lines coming in from the 
left to represent the input ideas, and lines going out to the right representing 
the output. To describe that discovery one must explain what occurs inside 
the box, i.e., how the outputs were obtained from the inputs. 

In the present case we are primarily interested in a single output idea, 
the idea of my proof of completeness of first-order logic. However, the 
dissertation in which I first set this down contains other results, including 
another completeness proof. When we look into the black box we shall see 
that the production of the primary output cannot be understood without 
reference to the others, so the diagram for our discovery will have several 
outputs. (See Section 3, below.) 

What about the inputs? In the case of a mature mathematician, the input 
ideas for a particular discovery may range very widely over studies and prior 
work compiled over an extended period of time. In the case of a doctoral 
dissertation the inputs can be identified more narrowly: Usually there is no 
prior work by the author, and one expects that lectures of teachers may have 
produced more significant inputs relative to input ideas from independent 
reading. In my own case there was indeed no prior work, and the number of 
teachers and of independent readings was reduced by circumstances relating 
to the history of the institutions where I studied and the military history 
of my nation; thus the number of inputs is small enough to permit a fairly 
complete listing. (See Section 2, below.) 

In Section 2, below, I sketch the extent of ideas about logic which I en- 
countered during the period 1938-1942, as a student. In Section 3 I outline 
my doctoral dissertation as it was accepted by Professor Church in June, 
1947. In Section 4 I describe my efforts to write a dissertation, beginning in 
March, 1946. 

?2. Background. In the Fall of 1938, in my second year as a student at 
Columbia University, I enrolled in a first course in logic offered in the Philos- 

ophy Department by Ernest Nagel, a distinguished philosopher of science 
who had helped found the Association for Symbolic Logic two years earlier. 
This course was not really mathematical in character, but it stimulated my 
curiosity in the subject and led me to browse in Bertrand Russell's Principles 
of Mathematics, [Russell, 1903], which I found by chance in a room of the 
library devoted to "books of general interest." 

It was in that book that I first read about the principle of choice. I was 
enormously impressed by Russell's example of a shoe store with infinitely 
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many pairs of shoes and of socks: How easy it was to specify one shoe from 
each pair in the shop, that one might wish to try on, and how seemingly 
impossible to specify one sock from each pair! As we shall see, it is just such 
a difficulty on which I focused when, eight years later, I began to work on 
my doctoral dissertation. 

Russell's Principle led me to peek into Principia Mathematica, which he 
co-authored with Alfred Whitehead [Whitehead/Russell, 1910]. The volume 
of formalism in this work was too daunting for me to tackle, but I read the 
several sections of text introductory to the formal developments, and was 
impressed with the general ideas of the theory of types-which also lay at 
the start of my later dissertation work-and with the mysterious axiom of 
reducibility. 

In Fall, 1939, when my third year of university studies began, I enrolled 
in an advanced course in logic taught by Nagel, and here came across my 
first experience with a mathematical treatment of a formal deductive system. 
The course treated systems of propositional and first-order logic taken from 
the little textbook by Hilbert and Ackermann.3 

Most of the course consisted of constructing formal proofs. Metamathe- 
matical results such as normal forms were treated, but none of these linked 
semantical notions to the syntactical structures on which the course was 
based. In particular, the concept of completeness was never considered. 

However, although Nagel did not incorporate this concept in the course 
itself, he did propose to me as a separate project the reading of W. V. Quine's 
proof of the completeness of propositional logic, that had appeared 18 
months before in Volume 3 of the Journal of Symbolic Logic.4 This was 
a stupendous experience in my education, not because of the subject of 
the paper, but because it showed me vividly that new work in logic, and 
more generally in mathematics, was being published, and that-with great 
difficulty-I could read and follow it. Although I took many courses in 
the Mathematics Department during my years at Columbia, this paper of 
Quine's was the only reading in mathematics, outside the textbooks of the 
courses, which any of my teachers suggested to me. 

As to the concept of completeness which was the focus of Quine's paper, 
it did not get through to me. I simply noted that the aim of the paper was 
to show that every tautology had a formal proof in the system of axioms 
presented, and I expended my utmost effort to check Quine's reasoning that 
this was so, without ever reflecting on why author and reader were making 
this effort. This strictly limited objective also kept me from wondering how 
the author thought of putting the steps of the proof together; the result was 

3[Hilbert/Ackermann, 1928]. 
4[Quine, 1938]. 
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that I failed to get "the idea of the proof," the essential ingredient needed for 
discovery. 

Just before I began this second course in logic taken with Nagel, the 
world entered a convulsive phase of its history when Poland was overrun 
by the German army, and World War II began. Alfred Tarski, a leading 
Polish logician, had left home a few days earlier to lecture at Harvard, at 
the invitation of Quine. Unable to return to his country and family, Tarski 
accepted invitations to lecture at other universities, eventually settling in 
Berkeley in 1942. Nothing of his work or his story was known to me when 
Nagel announced to his logic class that a famous Polish logician would come 
to Columbia to give a special lecture, and all of us students were urged to 
attend. I went eagerly, listened attentively. Tarski spoke of Kurt Godel's 
work on undecidable propositions in the theory of types, published eight 
years earlier, and on decision procedures that had been found for some 
formal systems and shown not to exist for others. In the question period 
following the talk I asked whether there could be a decision procedure to tell 
whether a sentence of the system studied by Godel was unprovable. It was 
very exciting for me to be in direct contact with "a famous logician."5 

In class, subsequent to Tarski's talk, Nagel told us students that it had 
taken him six months to read Godel's paper on the incompleteness of certain 
formal systems. At the time I inferred that this material could not be included 
in an ordinary course in logic, but would have to be made the subject of a 
special course all by itself. 6 

The two logic courses by Nagel were given in the Philosophy Department, 
and I took other philosophy courses as well, but my principal subject of 
study at Columbia during 1937-41 was mathematics. No courses in logic 
were given in the Mathematics Department, but in 1939-40, simultaneously 
with my second logic course, I studied projective geometry with a Professor 
Pfeiffer. Our textbook was the two-volume work by Oswald Veblen and 
J. W. Young, which begins with a metamathematical treatment of the axiom 
system used as the basis for deriving the theorems of the subject.7 Pfeiffer was 

5I met Tarski again at Princeton in 1946, when he spoke at a conference on logic held 
in connection with the celebration of the 200th anniversary of Princeton University. The 

following year I sent him a copy of my just-completed dissertation. After two post-doctoral 
years at Princeton, I took my first position as assistant professor at the University of Southern 
California in 1949. In 1952 I was invited to join Tarski at Berkeley, but I declined because of 
a "loyalty oath" required of all faculty members by the University of California at that time. 

Subsequently the oath was abolished, and I moved to Berkeley in 1953. 
6Some years later, Nagel joined with a non-academic co-author to write a popular ac- 

count of G6del's work, [Nagel/Newman, 1958]. This work has been translated into several 

languages, of which the latest is a Hebrew translation in 1993 by Nitsa Hadar-Movshovitz 
and Yael Harpaz-Rubin. (Dr. Hadar-Movshovitz was the first of my Ph.D. students in the 
field of mathematics education.) 

7See [Veblen/Young, 1910]. 
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quite interested in these foundational details, including the independence of 
the axioms, the principle of duality, and the relation of the axioms to models 
defined within the theory of real numbers. I studied this material eagerly, 
and feel that at a deep level it provided a basis for the unexpected turn toward 
completeness that my dissertation work took seven years later, after having 
started in another direction. 

As I stated above, the Mathematics Department at Columbia had no logi- 
cian among its faculty, and offered no courses in logic during my years there. 
However, there was one faculty member who drew me into an important 
reading experience during my final year at Columbia, 1940-41. That was 
F J. Murray, who worked on operator algebras, having collaborated with 
John von Neumann on publications in that field during and after a sojourn 
at the Institute for Advanced study. 

The Princeton University Press had just brought out Godel's monograph 
on the consistency of the axiom of choice and the generalized continuum 
hypothesis.8 Although I had never been a student of Murray's, he knew 
that I was about the only one among mathematics students or faculty with 
an interest in logic; so he sought me out and proposed that the two of us 
work through the G6del monograph together. I readily agreed, and ordered 
a copy of the monograph. As far as I can recall, Murray and I had one or 
two meetings to discuss the scope and the beginning of the work, and then 
he found himself too busy with other projects and I was left to work through 
G6del's monograph on my own. 

This event was probably my most important learning experience as an un- 
dergraduate. I gained much more of the content of Godel's monograph than 
I had in reading Quine's paper the year before. I admired the metamath- 
ematical treatment whereby the comprehension schema of set-formation is 
obtained from finitely many axioms, and the sophisticated handling of inner- 
model constructions by means of the notion of the "absoluteness" of various 
set-theoretical notions. I was intrigued by the creation of a universal choice 
function in the realm of constructible sets, while none had been at hand in 
the realm of sets described by the original axioms, drawing my attention to a 
class of functions which were to be the starting point of my dissertation inves- 
tigations five years later. Fortunately, an observation about choice functions 
that Godel made was not included in the first printing of his monograph, 
otherwise it might have led me to discard outright the dissertation problem 
on which I embarked. See Observation A at the end of Section 4 below. 

During my high-school studies I had thought of becoming a mathematics 
teacher, but in fall, 1940, I decided to apply for admission to a Ph.D. program 
in mathematics for the following year-without a clear idea of what sort of 
careers might follow. In the spring of 1941 1 was accepted at three universities 

8See [G6del, 1940]. 
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and chose Princeton, largely because I understood that there was a well 
known logician, Alonzo Church, in the Mathematics Department there. I 
had seen his listing as Editor of the Journal of Symbolic Logic when I had 
looked up Quine's paper in Volume 3, but had no idea what sort of work he 
did. In fact, I did not realize that creating and publishing mathematics was 
a regular part of a professor's work. 

The Ph.D. program which I began at Princeton in fall, 1941, called for me 
to spend two years taking a variety of mathematics courses, then to pass a 
"qualifying" oral examination to show that I had a good grasp in three areas 
of mathematics, and then to write a dissertation containing original research 
results. In my first semester I took courses in logic, analysis, and general 
topology. 

The logic course, given by Professor Church, extended over both semesters 
of the academic year. In comparison with present-day courses the material 
covered might be considered scanty. In the first semester various systems 
of propositional and first-order logic were introduced, normal forms were 
described and established and were used in proving completeness, and the 
(downward) Lowenheim-Skolem theorem was discussed. In the presentation 
of G6del's completeness proof, emphasis was given to its reductive character: 
the provability of a logically valid formula is reduced first to the provability 
of its Skolem normal form, and then to the provability of some tautology in 
a specified set of propositional formulas. 

In the second semester an applied second-order system for Peano arith- 
metic was studied in great detail, and the G6del incompleteness results were 
derived for it; and from these followed the incompleteness of second-order 
logic. In connection with the incompleteness proofs, primitive-recursive 
functions received detailed examination in the course, but there was not 
time to study general recursive functions. However, their definition was 
mentioned, and their role in establishing the non-existence of certain deci- 
sion procedures was described. 

One detail of the second-order Peano theory deserves comment. The lan- 
guage of this theory did not contain any operation symbols, either constants 
or variables. Thus, binary operations on the domain of natural numbers 
such as addition and multiplication did not have names in the system, but 
the corresponding ternary relations-expressing that the sum or product of 
x and y is z-were represented by 3-place predicate constants. Of course the 
possibility, in general, of replacing symbols for functions by using associated 
symbols for relations, is a basic metamathematical result that could well be 
mentioned in a beginning logic course, but the idea of using such a replace- 
ment throughout the development of a formal theory of numbers now seems 
strange to me. At the time, however, I accepted it without question as a 
part of the formalization of mathematics within logical systems, since all 
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first-order logical systems considered in the course were devoid of operation 
symbols. 

I have sketched above the content of my logic course at Princeton, but the 
manner in which the material was presented by Church played an important 
part in generating the conception of logic that the students received from the 
course. 

At every point of the course, Church would remind us that we were follow- 
ing "the logistic method" to study "logistic systems." This involved limiting 
our use of English, our meta-language, to set up and work with certain 
uninterpreted formal languages whose rules had to be specified with great 
exactitude in a completely effective way. This perspective is well set forth in 
the 68-page introductory chapter to Church's published textbook.9 

A 12-page account of the logistic method forms Section 7 of the Introduc- 
tion of the book, coming after 46 pages devoted to careful description of 
the linguistic components of languages such as those to be studied; Sections 
8 (Syntax) and 9 (Semantics) conclude the Introduction. However, these 
two dimensions of language play very unequal roles in the deductive systems 
whose study is the proper role of logic, according to Church. This can be 
gleaned from the following passage, taken from Section 9. 

"From time to time in the following chapters we shall interrupt the rigorous 
treatment of a logistic system in order to make an informal semantical aside 
... Except in this Introduction, semanticalpassages will be distinguishedfrom 
others by being printed in smaller type, the small type serving as a warning 
that the material is not part of the formal logistic development and must not 
be used as such. "'l 

The one-year course in mathematical logic described above, taken at 
Princeton during 1941-42, contains all of my study of logic as a gradu- 
ate student. In the middle of that year the U.S.A. was swept into World War 
II, requiring me to alter drastically my plans for graduate study. Instead 
of taking two years to prepare for my qualifying examination, I had to ab- 
sorb parts of mathematics by reading, rather than by course work, in Spring 
1942; I then passed the qualifying exam, received an M.A. degree, and left 
Princeton University for what were to be four years of work on military 
projects. " 

9[Church, 1956]. Early forms of Chapters I-IV were available in manuscript form in 1947, 
and contained the material covered in my first-semester course. Volume II of this work has 
never been published, but a "tentative table of contents of Volume II" is printed in Volume 
I, immediately following its table of contents, and shows that the material covered in my 
second-semester course was intended to appear in Chapters VI-VIII of Volume II. 

'?Emphasis of last sentence appears in the book. 
1 

During the period May, 1942 - March, 1946 I worked as a mathematician, first on radar 
problems and then, beginning January 1943, on the design of a plant to separate uranium 
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?3. My Ph.D. dissertation. The dissertation submitted to Princeton Uni- 
versity in June, 1947, contains my proof of completeness for first-order 
logic, as well as applications that we now consider to be part of the theory 
of models.12 

In Section 4, below, I shall describe the year-long process of discovery 
of those results. To better understand that process, we set forth in the 
present section the main results of the dissertation, and the way in which 
they were presented there. We shall see later that the mode of organizing the 
dissertation serves to hide the process of discovery. 

The dissertation contains four parts. Part I contains the new proof of the 
completeness of first-order logic, the discovery of which is to be described in 
the next section of this paper. Theorem I formulates what I call the strong 
completeness property for a system ? of first-order logic that Church calls 
a pure functional calculus of first order. C has denumerably infinite lists of 
propositional symbols, of individual symbols, and of predicate symbols of 
each finite rank. A recursive description of the sentential formulas (called 
well-formedformulas, and abbreviated wffs) is given, and among these the 
formal axioms are identified by means of five schemas; the formal rules of 
inference are detachment and generalization. Theorem I states that any set S 
of 1-sentences (wffs without free variables) that is formally consistent in the 
deductive system of ?, is satisfied by some denumerably infinite C-structure 
M. 

The key element of my proof of Theorem I is the enlargement of L to a new 
language LC, by adjoining an infinite sequence of new individual constants. 
The set C of all individual constants of LC becomes the domain of individuals 
of the structure M that will satisfy all wffs of S. The n-place relation over 
C that is assigned to any n-ary predicate symbol of ?, in the structure M, 
is defined by means of a certain consistent set S1 of LC -sentences, obtained 
by enlarging S in two steps: First, for each formal theorem of existential 
form, a substitution instance (using a constant of C) is added to S, and then 
the resulting set is enlarged to a maximal consistent set of LC -sentences, to 
obtain S1. 

Once Theorem I is established, three corollaries are easily obtained. Corol- 
lary I reads, The purefirst-order functional calculus is complete. Complete- 
ness means that every wff that is logically valid (i.e., satisfied in every ?- 
structure), is formally provable using the formal axioms and rules of infer- 
ence of C. This corollary gives the content of the completeness theorem 
proved by G6del in his doctoral dissertation in 1929.13 

isotopes. Most of my work involved numerical analysis to obtain solutions of certain partial 
difference-differential equations. During this period I neither read, nor thought about, logic. 

12The term "theory of models" did not gain wide usage until 1954, with the publication of 
[Tarski, 1954]. 

13The dissertation, [G6del, 1929], answered the question of completeness posed in 
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Godel used completeness to prove the statement given in our Theorem 
I, which I have called strong completeness. This nomenclature is justified 
because it is trivial to restate Theorem I in the following form: If S is any set 
of ?-sentences and r is any logical consequence of S (i.e., r is satisfied in every 
?-structure that satisfies all sentences of S), then r is formally derivable from 
S (using the formal axioms and rules of inference of C). When Theorem I 
is formulated in this way, Corollary I becomes a special case of Theorem I 
(the case where S is empty), so if the corollary expresses completeness, we 
can say that the theorem expresses strong completeness. 

The remaining two corollaries of Theorem I are as follows. Corollary 
II: If a set of wvffs of C is satisfied in some C-structure, then it is satisfied 
in some denumerably infinite C-structure. This, of course, is the content 
of the Skolem-Lowenheim theorem. Corollary III. A set S of wffs of C1 
is simultaneously satisfied in some ?-structure M if, and only if, each finite 
subset S1 of S is satisfied in some C-structure MA1. This result is now called 
the compactness property of first-order logic, and has become one of the 
principal tools of model theory. The compactness property was not part of 
Godel's dissertation [G6del, 1929] but was added in the version written for 
publication [G6del, 1930]. 

Part I of my dissertation contains a description of various first-order 
logical systems, differing in several ways from the pure first-order functional 
calculus C, for which results analogous to Theorem I and its corollaries hold. 
First-mentioned are the applied first-order functional calculi, in which any 
finite or denumerably infinite set of constants is admitted in the formation 
of wffs. The constants may have the type of propositional, individual, or 
predicate symbols, and the variables (except for those of individual type) 
may be omitted. 

In view of the fact that the formal logical axioms are given by means of 
schemas having infinitely many instances, the deductive system for C em- 
ployed in the dissertation dispenses with substitution rules for the several 
types of variables; hence there is no difference in the treatment of variables 
and constants (except for individual variables which, appearing in quanti- 
fiers, have a special status affecting their occurrence in formal axioms). 

It is stated that the applied calculi without predicate variables are used 
to formalize various mathematical theories in algebra and geometry, where 
the logical axioms given for propositional connectives are supplemented by 
axioms intended to express the character of the mathematical concepts of 
the theory. Many of these systems require an equality symbol for the relation 

[Hilbert/Ackermann, 1928]; it was presented to the University of Vienna in 1929. Godel's 
Ph.D. degree was granted in Feb., 1930. G6del rewrote the dissertation material for publi- 
cation, submitting it in October, 1929; it appeared in 1930. [G6del, 1930]. The dissertation 
itself was finally published in 1986, in Volume I of the collected works of G6del, edited by 
Feferman et al, [Feferman, 1986]. 
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of identity; this can be treated as a logical constant, by introducing a binary 
predicate constant, Q, and adjoining a new set E of formal axioms to the 
deductive apparatus of C. Godel, in his dissertation, showed how a strong 
completeness theorem for first-order logic can be extended to cover the case 
of first-order logic with identity, and this method is borrowed to cover such 
applied first-order functional calculi in my dissertation.14 

The final way mentioned, for generalizing Theorem I and its corollar- 
ies to a wider class of first-order deductive systems, is to consider applied 
first-order functional calculi C in which a non-denumerable set of individual 
and predicate symbols is used in the formation of wffs. The formal axiom 
schemas and rules of inference remain exactly as before. In such a system, 
one can consider a consistent set S of sentences that is non-denumerably 
infinite. A structure M satisfying each sentence of S can be obtained with 
minor and obvious changes to the method used in the proof of Theorem I.15 

Part I of my dissertation ends with the formulation, for later reference, of a 
Theorem II. This records the observations that had been made, to the effect 
that the strong completeness property holds for a wide class of first-order sys- 
tems, rather than only for the pure first-order functional calculus mentioned 
in Theorem I. Specifically, Theorem II states that if is any consistent set of 
sentences of an applied, extended, first-orderfunctional calculus 1 (which may 
include an equality-symbol to refer to the identity relation in L-structures), 
then there is some C-structure M, having a domain whose cardinality does not 
exceed the cardinal number of the set of all C-symbols, which satisfies each 
sentence of S. 

Immediately following Theorem II there appears a Corollary. A set S of 
sentences of a system 1 of the kind described in Theorem II is satisfied in 
some structure M, if and only if eachfinite subset S1 of S is satisfied in some 
structure M . This corollary expresses the compactness property for sets of 

'4The axioms E assure that in any structure M satisfying a given consistent set S of 
L-sentences, the predicate symbol Q will denote a congruence relation Q' of the structure. 
Using this, one can form from M and Q' a "quotient structure", M*, whose elements are 
the equivalence classes induced by Q' on the domain of individuals of M; this parallels the 

algebraic construction of quotient groups and quotient rings. It is then easy to check that 
M* is a structure that also satisfies S, in which the symbol Q denotes the identity relation. 
However, when M is denumerably infinite, M* may be finite; hence the formulation of 
Theorem I must be modified accordingly, when applied to first-order logic with identity. 

15First, L is enlarged to L1 by adjoining a set of new individual constants having the same 
cardinality k as the set of all symbols of L. This assures that the set C of all individual 
constants of of L1, which serves as the domain of individuals for the structure M which 
is being formed, will have this same cardinality k. Then, in enlarging S to the set Si of 
LI-sentences that is used to determine which n-place relation over C is assigned by M to 
each n-ary predicate symbol, the axiom of choice is used to arrange all LI-sentences in a 
well-ordered sequence of length k, instead of using a simple enumeration of sentences as was 
done to form S, in the proof of Theorem I. 
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first-order sentences having any cardinality. It is the principal tool used for 
a series of applications that make up Part II of the dissertation. 

Part II is entitled Applications to algebra. It begins by setting up an applied 
first-order calculus for ring theory. Following the example I encountered in 
my second-semester course with Church, in Spring 1942, I used no operation 
symbols, only a binary relation-symbol for equality and two ternary relation 
symbols to formalize addition and multiplication.16 

Using these, I listed ten ring axioms that were to be added to the logical 
axioms in this applied calculus. At the same time I indicated how, formalizing 
results about a particular ring, Z, one could adjoin to the preceding system a 
set of individual constants correlated with the elements of R, and add to the 
ring axioms what I called the basic sentences of RU-sentences employing the 
individual constants to indicate, for each ordered triple of elements, whether 
or not the sum (or the product) of the first two is equal to the third.'7 

The first application given of the compactness property for first-order logic 
consists of a new proof of the Boolean representation theorem, first shown 
by Marshall Stone in [Stone, 1936]. So Theorem III of the dissertation reads: 
Every Boolean ring is isomorphic with some subring of the ring of all subsets of 
somefixed domain of individuals (in which the ring operations are intersection 
and union (modulo 2)). The proof given for Theorem III uses the Corollary 
of Theorem II (compactness) to show that a given Boolean ring R can be 
extended to a Boolean ring that is atomistic; the representation of the latter 
by the ring of all sets of its atoms is easily accomplished. The given Boolean 
ring R is brought into the extended, first-order applied calculus by means 
of basic sentences involving individual constants correlated with elements of 
7. That each finite subset of these is consistent with axioms for atomistic 
Boolean rings, is proved by showing that any finite subset generates a finite 
subring of U, and that every finite Boolean ring is atomistic. 

Theorem III, which is an algebraic theorem given a metamathematical 
proof, is used as an example to motivate a general theorem of model theory. 
First, definitions are given for the expressions a type of algebraic structures, 
a particular algebraic structure, basic sentences of an algebraic structure, and 
elementary property of a type of algebraic structures.18 Then, Theorem IV 

'6When, in 1951, I re-wrote this part of my dissertation for publication (it was the third 
part to appear), I discontinued this anachronistic feature, and employed a first-order calculus 
containing operation symbols. But when, in 1948, I rewrote Part I of the dissertation for 
publication, the operation symbols were still lacking. See [Henkin, 1953] and [Henkin, 1949], 
respectively. 

7This set of "basic sentences" of R has since come to be called the diagram of R, following 
terminology introduced by Abraham Robinson, who independently found most of the results 
of Part II of my dissertation by similar methods. 

8 In the current terminology of model theory, a type of algebraic structures is an elementary 
class, i.e., the class of all models of some first-order sentence, a particular algebraic structure 
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Theorem III, which is an algebraic theorem given a metamathematical 
proof, is used as an example to motivate a general theorem of model theory. 
First, definitions are given for the expressions a type of algebraic structures, 
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'6When, in 1951, I re-wrote this part of my dissertation for publication (it was the third 
part to appear), I discontinued this anachronistic feature, and employed a first-order calculus 
containing operation symbols. But when, in 1948, I rewrote Part I of the dissertation for 
publication, the operation symbols were still lacking. See [Henkin, 1953] and [Henkin, 1949], 
respectively. 

7This set of "basic sentences" of R has since come to be called the diagram of R, following 
terminology introduced by Abraham Robinson, who independently found most of the results 
of Part II of my dissertation by similar methods. 

8 In the current terminology of model theory, a type of algebraic structures is an elementary 
class, i.e., the class of all models of some first-order sentence, a particular algebraic structure 
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is formulated as follows: A necessary and sufficient condition that a given 
algebraic structure A be a sub-structure of an algebraic structure 13 of the same 
type which has a given elementary property P, is that it be possible to imbed 
eachfinite subset A1 of A, in a structure B1 having property P, in such a way 
that the basic sentences for the elements of A1 are preserved. 

A discussion of elementary properties follows in the dissertation, making 
explicit that a property of structures defined by higher-order sentences may 
be elementary if there is an equivalent first-order sentence. This is exemplified 
by showing that, for the algebraic class of fields, and for any prime number 
q, the property to be of characteristic q is indeed elementary. Using this, the 
dissertation Theorem V is formulated: if, for an infinite sequence of prime 
numbers qi there existfields of characteristic qi having a certain elementary 
property P, then there exists afield of characteristic zero having property P. 

The following Corollary I is obtained by using a complete diagram for a 
given field of characteristic zero. If, for a given infinite sequence of prime 
numbers qi, everyfield of characteristic qi has an elementary property P, then 
everyfield of characteristic zero can be embedded (as a subfield) in somefield 
(of the same cardinality) having property P. 

Corollary II for Theorem V states that the property of a field to be of 
prime characteristic is not elementary, even though the property to be of 
characteristic q for any particular prime number q, is elementary. Then, a 
quasi-elementary property being identified as one defined by some set of first- 
order sentences, it is remarked that theproperty offields to be of characteristic 
zero is quasi-elementary but not elementary, while the property to be of prime 
characteristic is not even quasi-elementary. 

This concludes Part II of the dissertation. 
Part III of the dissertation is entitled The calculi of higher order. This was 

intended to be the climax of the work because it throws new light on G6del's 
incompleteness results. 

In a theory of types it is possible to define the natural numbers and the 
arithmetical operations on them, so that one can develop the Peano theory 
of numbers in a pure logical calculus of high enough order. Even in second- 
order logic, because the Peano postulates are categorical it is possible to 
correlate with each sentence of arithmetic a sentence of the pure logical 
calculus of second order, such that the former is true for the system of natural 
numbers if, and only if, the latter is logically valid. Thus the sentences of 
arithmetic constructed by Godel, which he showed to be true of the natural 
numbers but unprovable in an appropriate formal deductive system, provide 

is an element of such a type of structures, the basic sentences of an elementary structure are 
the sentences of its diagram (as mentioned in Footnote 18), an elementary property of a type 
of algebraic structures, is a property defined by a first-order sentence of the language of that 
type of algebraic structures. 
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arithmetic constructed by Godel, which he showed to be true of the natural 
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of algebraic structures, is a property defined by a first-order sentence of the language of that 
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us with valid sentences of pure logical calculi which cannot be formally 
proved in the deductive systems with which these calculi are usually equipped. 

The unprovable sentences constructed for given formal systems by Godel 
are very special, and one may wonder whether there is some general criterion, 
involving the truth or falsity of sentences under suitable interpretations of the 
language, which can distinguish the provable sentences from the unprovable 
ones. This is exactly what is accomplished in Part III of my dissertation. 

An interpretation of the formal languages created in mathematical logic is 
always made with respect to some structure. A structure M always possesses 
a non-empty domain D of elements, which serves (in the interpretation 
of a language C) as the range of individual variables of L. Additional 
components of M may be designated elements, operations, or relations over 
D, which serve as the denotations of any individual constants, operation 
constants, or predicate constants of L. If C is of higher order, it may have 
some constant symbols of higher type. For example, if 1 is intended for use 
in the theory of topological spaces, it may have a unary predicate symbol R 
to serve as a name for the set of all open sets of points. In that case, any 
structure used to interpret C would have to possess a designated set R' of 
subsets of D, to serve as the denotation of the symbol R. If S is a given set 
of L-sentences, any structure M for C which satisfies all sentences of S is 
called a model of S. Sometimes, even if no particular set of L-sentences is 
specified, a structure M with components appropriate for interpreting C is 
called an C-model. 

Part III of my dissertation begins with a discussion of the pure functional 
calculus of second order, C2. This is obtained from the pure calculus of 
first order (mentioned above as the subject of Theorem I of Part I of the 
dissertation), by allowing propositional and predicate variables to appear 
in quantifiers, as well as individual variables. Since this system has no 
constant symbols, a structure M used for interpreting L2 need not have any 
component other than a domain D of individuals. For each positive integer 
n, the n-ary predicate variables of L2 (which always appear within existential 
or universal quantifiers in C2-sentences, though they have free occurrences 
in wffs that are not sentences, such as atomic wffs), range over the set of all 
n-place relations over D when L2 is interpreted with respect to M. 

Clearly, any two C2-structures whose domains of individuals have the 
same cardinality, will satisfy the same C2-sentences. A sentence of 12 that 
is satisfied by every 1C2-structure is logically valid. All formal theorems of 
C2 (sentences derivable from the formal axioms of L2 by using the formal 
rules of inference), are logically valid. But Godel showed how to construct 
logically valid C2-sentences that are not formal theorems. 

In Part III of my dissertation structures called general models are intro- 
duced, which can be used to interpret 12. The old structures are among 
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them, and are called standard models. An C2 sentence that is satisfied in 
every general model is called logically valid in the general sense. It is easy to 
see that every formal axiom of ?2 is satisfied by every general model, and 
that the formal rules of inference preserve this property, so that every formal 
theorem of C2 is logically valid in the general sense.'9 What is stated in Part 
III of my dissertation is that the converse holds, so that we get a generalized 
completeness theorem: Every ?2-sentence that is logically valid in the general 
sense, is formally provable in C2. 

The intuitive idea for the definition of general ?2-models is simple. Such a 
structure M, instead of consisting of only a single domain D, is to consist of 
infinitely many components, (Do, D2,..., Dn, ... ). Do is to be an arbitrary 
non-empty set. DI is to be a domain of some subsets of Do and, for each 
n > 1, Dn is to be a domain of some n-place relations over Do. When such 
a generalized model is used to interpret the ?2-sentences, Do serves as the 
range of individual variables and, for each n > 0, Dn serves as the range 
for n-ary predicate variables. However, the sets and relations chosen as 
members of the domains cannot be selected arbitrarily. 

The intuitive idea given above for general ?2-structures must be com- 
plicated, by providing conditions to ensure that every formally provable 
?2-sentence is true for all general models. This is because, among these 
formally provable ?2-sentences, are instances of the comprehension principle 
for set theory. For example, being given any wff b of C2 containing free 
occurrences of individual variables xl and x2 (and having no other variables 
occurring freely in it), there is a formal theorem asserting the existence of a 
2-place relation R consisting of just those ordered pairs of individuals that 
satisfy b. Hence, we need to make sure that in our generalized models, the 
domain D2 contains such a relation R. 

This requirement results in a definition of general models M whose do- 
mains D,, for n > 0, are closed under Boolean operations, and such that 
Dn contains all projections of elements of D,n+, for each n > 0. These 
conditions arise from the sentential connectives, and the quantifiers con- 
taining individual variables of C. However, further conditions are needed 
to cover requirements connected with quantifiers containing predicate vari- 
ables. This makes the precise definition of generalized models complicated, 
and it becomes unclear, without a proof, that there are any general models 
for C2 other than the standard model (in which, for each n > 0, Dn is the set 
of all n-place relations over Do). 

The generalized completeness theorem for 2C cited above shows, in the 
light of Godel's incompleteness results for ?2, that indeed there must be non- 
standard general models for C2. The proof of that completeness theorem 
gives a general method for constructing such non-standard models. 

19This result is the general soundness theorem for C2. 
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The discussion (in Part III of my dissertation) of the pure logical calculus 
of second order, ?2, is not more detailed than what has been said above; in 
particular, the definition of general models of ?2 is not made precise, and no 
proof is given for the generalized completeness theorem. Instead, a detailed 
account of these matters is given for a logical system T of infinite order, in 
the form of a theory of types formulated by Church.20 

We shall not reproduce details of the system T at this point, as we shall 
need to do that in Section 4 of this paper, below. Here, we merely set down the 
content of Theorem VI of the dissertation, which states a strong completeness 
property for T with respect to general models. Three corollaries are then 
listed, analogous to the corollaries of Theorem I that were given for the 
system L of first-order logic in Part I. 

THEOREM VI. If S is any formally consistent set of T-sentences, then there 
is a denumerable general model M ofT for which each sentence of S is true. 
(Each domain Dn of M is denumerable.) 

COROLLARY I. The deductive system ofT is complete (with respect to inter- 
pretations by general models). 

COROLLARY II. IfS is a set of T-sentences satisfied by some general model, 
then there is a denumerable general model satisfying S. 

COROLLARY III. IfS is a set of -sentences such that eachfinite subset S1 is 
satisfied by some general model M 1, then there is some general model M that 
satisfies all sentences of S. 

There is also a Theorem VII, extending Theorem VI to cover applied logical 
systems of type-theory, obtained by adjoining a set of constants (of various 
types) of any cardinality. This is analogous to the passage from Theorem 
I to Theorem II in Part I of the dissertation. A compactness corollary for 
Theorem VII, paralleling Corollary III of Theorem VI, completes Part III 
of the dissertation. 

Part IV of the dissertation is entitled Applied systems of logic. It begins by 
confessing that the compactness principle for higher-order formal languages 
is unlikely to find applications in various parts of mathematics, which were 
exemplified for first-order languages in Part II of the dissertation. This is be- 
cause formal definitions for higher-order concepts used in mathematics, such 
as the concept of topological space, change their meaning when interpreted 
with respect to a general model.21 

20See [Church, 1940]. 
21 One minor application of compactness is given, to obtain a new proof of a result obtained 

in 1947 by C. J. Everett and G. Whaples. This gives a necessary and sufficient condition on 
a set M of finite sets, for the existence of a choice function f on M such that f(A) / f (B) 
whenever A and B are distinct elements of M. 
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property for T with respect to general models. Three corollaries are then 
listed, analogous to the corollaries of Theorem I that were given for the 
system L of first-order logic in Part I. 

THEOREM VI. If S is any formally consistent set of T-sentences, then there 
is a denumerable general model M ofT for which each sentence of S is true. 
(Each domain Dn of M is denumerable.) 

COROLLARY I. The deductive system ofT is complete (with respect to inter- 
pretations by general models). 

COROLLARY II. IfS is a set of T-sentences satisfied by some general model, 
then there is a denumerable general model satisfying S. 
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There is also a Theorem VII, extending Theorem VI to cover applied logical 
systems of type-theory, obtained by adjoining a set of constants (of various 
types) of any cardinality. This is analogous to the passage from Theorem 
I to Theorem II in Part I of the dissertation. A compactness corollary for 
Theorem VII, paralleling Corollary III of Theorem VI, completes Part III 
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Part IV of the dissertation is entitled Applied systems of logic. It begins by 
confessing that the compactness principle for higher-order formal languages 
is unlikely to find applications in various parts of mathematics, which were 
exemplified for first-order languages in Part II of the dissertation. This is be- 
cause formal definitions for higher-order concepts used in mathematics, such 
as the concept of topological space, change their meaning when interpreted 
with respect to a general model.21 

20See [Church, 1940]. 
21 One minor application of compactness is given, to obtain a new proof of a result obtained 

in 1947 by C. J. Everett and G. Whaples. This gives a necessary and sufficient condition on 
a set M of finite sets, for the existence of a choice function f on M such that f(A) / f (B) 
whenever A and B are distinct elements of M. 
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Instead of new results about structures that have been considered in math- 
ematics, Part IV contains descriptions of applied formal languages for set 
theory, and for number theory, and calls attention to the possibility of finding 
non-standard models for axiom systems used in these areas. Examples con- 
sidered are Bernays/Godel set-theory formalized as a second-order system 
(or extensions to higher-order systems), and Peano number-theory (formal- 
ized as a second-order system). 

It is shown how non-standard models of number theory arise when com- 
pactness is used to get a general model satisfying a set of sentences of the 
form u 5= 0, u - 1,..., where u is an individual constant adjoined to the 
second-order system in which Peano axioms are formalized. The theory of 
such a model does not satisfy the condition of co-consistency, used by G6del 
in formulating his incompleteness results. It is shown that the order-type of 
such a denumerable non-standard model must be co + q(co* + co). 

The dissertation ends on a philosophical note concerning non-standard 
models. It suggests that Godel's incompleteness results can be considered 
as stating a fundamental inability to communicate the kind of mathematical 
systems we are examining, rather than an inability to establish facts about 
such a system. 

?4. Working on my dissertation-the discovery. In March, 1946, I returned 
to Princeton to complete my work for the Ph.D. degree after an interruption 
of almost four years. The sole remaining requirement for the degree was 
that I write an acceptable dissertation. I was awarded a pre-doctoral fellow- 
ship by the National Research Council, part of the government's effort to 
refill colleges and universities with students and faculty from among those 
returning from war-time work. 

Immediately upon my return I began to attend a course in logic that Profes- 
sor Church had begun the preceding month. The subject was Frege's theory 
of sense and denotation, of which I had never heard before. Through careful 
study of examples, Church made a convincing case for Frege's thesis that to 
understand how language functions in conveying meaningful communica- 
tions, it is not sufficient to study the relation between the symbolic linguistic 
structure and the universe of objects to which it refers-it is necessary to 
posit a third realm of abstract entities called senses, or concepts. Under this 
theory a symbolic expression functioning as a name denotes an object of the 
universe of discourse, and expresses some sense of that object; a sentence is 
construed as a name of its truth value, and the sense it expresses is called a 
proposition. 

It was Church's aim to develop a mathematical theory of senses and their 
relation to the objects to which they refer. To obtain utmost precision, this 
was to be a formalized axiomatic theory. As a vehicle, he chose a formulation 
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theory a symbolic expression functioning as a name denotes an object of the 
universe of discourse, and expresses some sense of that object; a sentence is 
construed as a name of its truth value, and the sense it expresses is called a 
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It was Church's aim to develop a mathematical theory of senses and their 
relation to the objects to which they refer. To obtain utmost precision, this 
was to be a formalized axiomatic theory. As a vehicle, he chose a formulation 
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of the simple theory of types that he had published in 1940, and elaborated 
it by adjoining a new hierarchy of types of senses.22 

The Church-Frege theory of sense and denotation has been of continuing 
interest to me, but Church's 1940 theory of types, which we shall here call 
T, enthralled me from the moment it appeared in the 1946 course. Within a 
few weeks I had formulated a conjecture about it, and set out to find a proof 
which I hoped to incorporate in a dissertation. To follow the course of these 
ideas we must examine the theory T in some detail. 

In T, there are two domains or types, at the base of the hierarchy of types. 
DI is the type of individuals, and Do is the type of truth-values.23 Further 
types are built up from Do and D1 by providing, for each types D, and Dh, a 
type D(J,h) of functions from Db to D,. [A subset of Da is identified with the 
function of D(o,) which assigns to all of its elements, and to no others, the 
value T (truth); thus, D(Oa) serves as the type of all subsets of D,. Afunction 
of n + 1 variables is identified with a function of its first variable, whose 
values are functions of its last n variables. Thus, a binary relation between 
elements of Da and of Db is identified with a function of type D((Ob)a), and 
the latter serves as the type of all such relations.24] 

Now we are ready to describe the formal language of T which, when 
interpreted, may be used to make statements about the hierarchy of types 
described above. 

As to symbols of T, there are variables, constants, and three improper 
symbols A, ), and (. For each type symbol a, an infinite list of variables of 
type a is given, e.g., Ca, da, ..., qa, c ... .There are constants Noo, Aooo, 
and, for each type symbol a, constants 7n0(0a) and a,(oa). 

Certain strings of symbols are called well-formedformulas (wffs), and each 
is given a type. First of all, any variable or constant symbol by itself is a 
wff, and has the type of its subscript. Then, there are two ways to build a 
longer wff from two given ones. (i) If xh is any variable of type b and Ma is 
any wff of type a, then (;lxhM,) is a wff of type (ab). (ii) If Fah and Bh are 

22See [Church, 1940] for the original theory. A version of the theory incorporating types 
of senses was published later, [Church, 1951]. 

23For ease in publication we make various typographical changes from the theory T as it 
appears in [Church, 1940]. For example, Church calls Do the type of propositions, and states, 
"We purposely refrain from making more definite the nature of the types Do and D, ... ". 
However, in the terminology of the theory of sense and denotation propounded in his 1946 
course, the formal sentences of T are wffs of type 0; since sentences denote truth values, 
these must be the elements of Do; propositions, being senses expressed by sentences, lie in a 
separate type which is not a component of the theory T. 

24Hereafter we drop outer parentheses in writing type symbols, and we use a sequence of 
more than two type symbols to abbreviate the type symbol obtained by associating to the 
left. Thus, Doh, is used as the type of binary relations between elements of D, and of Dh. 
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wffs of types ab and b respectively, then (Fa^Bb) is a wff of type a.25 Every 
occurrence of a variable xb in a wff Ma is free, unless it is within a part of 
Ma of the form (AxbNc), in which case it is bound. A closed wff (cwff) is a 
wff with no free variables. 

When the language of T is used to make statements about the hierarchy of 
types, each wff Bb refers to an element of the type Dh. A wff of form FabBb 
refers to the element of Da obtained by applying the function designated by 
Fab to the argument designated by B^. A wff of the form AxhMa refers to 
the function in Dab which, when applied to an argument Zh, yields as value 
the element designated by the wff Ma when each free occurrence of xh in 
Ma is assigned the value Zb. Thus, an occurrence of 2xh in a wff serves as a 
functional abstractor for the wff Ma to which it is prefixed. 

To complete the description of the intended meanings of wffs, as referring 
to elements of the types of the theory T, we must indicate the elements to 
which variables and constants refer. Of course, a variable xh ranges over all 
of the domain Db; it only refers to a particular element of the latter when one 
is assigned to it in some linguistic context. Similarly, a wff,Ma which contains 
free variables of one or more types, will not refer to a particular element of 
Da unless values of appropriate type are assigned to those variables. 

The constant Noo denotes the negation function of Doo which, acting on 
either truth value of Do gives the other one as its value. The constant Ao00 
denotes the disjunction function of D0oo, so that the wff (Aooopo)qo denotes 
T iff either of the variables po, qo is assigned the value T, and denotes F if 
both variables are assigned F. Because of these meanings we make contact 
with traditional symbols for propositional connectives by writing - Bo for 
NooBo, Bo V Co for (AoooBo)Co, and Bo D Co for (~ Bo) V Co, for any wffs Bo 
and Co. 

Next, for each type a, the constant 7o0(0a) denotes the function of Do(0a) 
which, when applied to any element of Doa (identified with a subset of Da,), 
produces the value T if the subset is the whole of D,, and produces the value 
F otherwise. From this it follows that a wff of the form 7ro(o0)(Ax Bo) will 
refer to the truth value T if, and only if, Bo refers to T for every assignment of 
an element of D, as a value for the free occurrences of the variable x, in Bo. 
Because of this intended meaning of the constant 7r0(0a), we may introduce 
universal quantifiers by writing (Vxa)Bo for 710(oa) (2x B), for any wff Bo and 
variable Xa. 

Using such a quantifier we can obtain, for each type a, a wff which, under 
the intended interpretation of T will denote the identity relation for elements 
of the type Da; we shall introduce the symbol Qo,, as an abbreviation for it, 

25Hereafter we use subscripts to indicate the type of any wff under consideration. We 
abbreviate notation for wffs by omitting parentheses with the same convention as for type 
symbols (see preceding footnote). 
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and then write Ba = Ca for (QOaaBa)Ca, where Ba and Ca are any wffs of 
type a. The formula for QOaa is AYa iAZ (Vgoa) (goaYa D goaZa)), so that the wff 

(Q0aaBa )Ca denotes the same element as (Vgoa) (goaBa 3 goaCa). Recalling 
that elements of type (Oa) have been identified with subsets of Da, this wff 
expresses the fact that every subset of Da containing the element Ba will also 
contain the element Ca, and this clearly has the value T if, and only if, Ba is 
the same element as C. 

Finally, we come to the constants ,(0oa) that have been provided in the 
formal language of T; they are intended to play the role of selection operators 
when the language is interpreted. That is, for any type a, la(Oa) denotes a 
function which, acting on any argument zo, (regarded as a subset of Da), 
assigns to it an element of ZOa (if ZOa is not empty). It follows that if Bo 
is a wff containing free occurrences of some variable Xa, and if there is one 
and only one element of D, which, when assigned as value to these free 
occurrences of xa, produces the value T for the wff Bo, then la(Oa)(AxaBo) 
denotes that unique element of Da. Thus, the notation (Ix )Bo is introduced 
as an abbreviation for lt(o.) (Axa Bo), and the part (Xa ) of this notation serves 
as a description operator.26 

Having described the syntax of the formal language for T, and having 
indicated the intended interpretation of that language, it remains to describe 
the formal deductive apparatus of axioms and rules of inference needed to 
qualify T as a logistic system. 

There are six formal rules of inference. The first three describe the process 
of A-conversion, allowing for a change of bound variable in a part of a 
wff, and for the replacement of a part (Ax^Ma)Nb of a wff by the result of 
replacing all occurrences of xb in Ma by occurrences of Nh (under suitable 
restrictions on free and bound variables), or vice versa. Then come familiar 
logical rules of substitution, detachment, and generalization. 

As to the list of formal axioms, this begins with a standard set of four 
axioms for propositional calculus, followed by the following two axiom 
schemas for handling quantifiers with variables of any type a. 

Schema 5". (T0(o,f/o) D (fo,x,). 
Schema 6". (VXa)(po V foaxa) D (po V o0(0a)f0o). 
These are all of the axioms needed for the logical functional calculus, 

although we could add the following axiom schema of descriptions to enable 
us to incorporate the logical use of the English word "the". 

Schema 9". (fo,x ) D [(VYa)(fOaya D Xa = Ya) D foa ((oa(fa)fOa)] 

Of course you will wonder about Axioms (Schemas?) numbered 7 and 8. 
If they are not part of the logical functional calculus, what are they doing in 

26When used in a context (IXa) in Church's paper, the symbol is an inverted iota. In any 
case, as part of a description operator it functions like the English word "the". 
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this formal deductive system? And what are they? The answer is that Church 
wished to show how a logistic system can be applied to provide a foundation 
for mathematics, or at least for Peano arithmetic and real analysis. The 
Axioms 7 and 8 together have the effect of an axiom of infinity, Axiom 7 
being essentially , (Vxl)(Vyl)(xl = yi), and Axiom 8 ensuring that D1 
cannot be finite. Schemas 10"a and 1 1" provide axioms of extensionality and 
choice, respectively. 

Schema 10ab. (Vxh)[fa,bX = gax^] D (fab = gab) 

Schema 11". fOXa, D foa(l,a(oa)foa) 

Of course in the presence of axioms 11a, Schema 9" could be dropped, 
as it is directly derivable from Axioms 1-4 and 11a; but Church set down 
both 9" and 1 a, for he thought it desirable to investigate the consequences 
of Axioms 1-9a without 10"h and 11a. 

Several features of the theory T sketched above were interesting to me, 
but I was especially attracted by the neatness and shortness of the formula 
expressing the axiom of choice. It seemed to me that the symbol la,(a) was 
put into the formal language of T originally to serve the function of the 
definite article "the", as expressed in Axiom 9", and that its availability to 
provide such a succinct formulation of the axiom of choice was a fortuitous 
circumstance that must have come to Church as an inspired afterthought. 

In describing the intended meanings of the formulas of the formal lan- 
guage, above, I have been careful, but not mathematically precise. In this I 
was following Church. I had never seen, in his courses, a Tarskian definition 
of truth for any formal language, nor is one given in the paper [Church, 
1940]. Yet Church seemed to have a crystal clear vision of the structure of 
meanings for the language of T, and indeed this was precisely the object 
of study in the course on sense and denotation in which I encountered this 
language. 

I enjoyed the fact that the functional abstractor symbol, A, enables us 
to name many elements in the hierarchy of types. This is in contrast to 
the simplified version of type-theory fashioned by G6del from Principia 
Mathematica, which is called PM in [Godel, 1931]. PM is essentially a 
pure monadic logical calculus of order co, converted to an applied system 
by choosing the domain of individuals to be the natural numbers, adding 
constants to denote zero and the successor function, and using these to 
formulate Peano axioms that are added to the logical axioms in the deductive 
system. Of course formulas with free variables in PM are associated with 
sets and relations, and Godel takes us through a long list of these; but there 
are no names for these. 

I decided to try to see just which objects of the hierarchy of types did have 
names in T. The natural place to start was in the two domains, Do and D1, 
at the base of the hierarchy. Of course the two elements of Do, T and F, 
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had names, e.g., (rr(00o) = ro(oo)) and N(oo)o(or0(oo) = 0ro(00)). But there were no 
names of individuals in D1; and indeed, as long as there was no specification 
of a particular domain of individuals, it made no sense to ask for names 
of particular individuals. So I decided that for my project I would take D1 
to be the set of natural numbers, and I would add to the language of T a 
constant, 01, to serve as a name for the number 0, and a constant S11 to serve 
as a name for the successor function. In this I was following the example of 
G6del when he set down the language for PM.27 

Of course, with constants 01 and S 1 added to the language of T, and with 
D1 now chosen to be the set of natural numbers, every element of D1 has a 
name (containing 01 and repeated occurrences of SIl). Proceeding up the 
hierarchy of types, I quickly came to the type Do1 whose elements, already 
identified with subsets of D1, I knew could be used as real numbers under 
suitable definitions. On the basis of cardinality, not every element of D0, can 
be named by a wff, since there are only a denumerable number of the latter. 

Before trying to make some sort of general survey of the nameable func- 
tions in the various types Dah, I went over the recursive process for identifying 
the denotation of any wff. Everything seemed perfectly clear to me except 
for one thing: The function assigned as denotation to each of the constants 
N00, Aooo, 7to(oa), and to the additional constant S11, were completely definite, 
but in the case of the constants la(0a) there was ambiguity. In discussing 
meanings, it was said only that the denotation of li(o0) would be some choice 
function for the non-empty elements of Do, (considered as subsets of D,), 
but no particular one had been mentioned. As a result, the element of Da 
named by a wff Ma containing some symbol Ih(0h) would not be definitely 
determined. I wondered whether I could not remedy this "defect." 

Of course there was no trouble in choosing 11(01) to be the function such 
that, for any element fol, Il(0i)foI = the least element of fol if there is 
some natural number xl for which folxl = T, and setting li(0ol)fO = 01 
if there is no such xl. However, when I tackled the problem of describing 
some particular choice function to serve as the denotation of l(o0)(o(o)), I 

27 G6del had available the material for a theory of natural numbers within the hierarchy of 
types in PM without dedicating the type of individuals to serve as natural numbers. Namely, 
he could have used the Frege-Russell definition of numbers as being particular sets of sets of 
individuals, i.e., elements of the third-level type. He explains in a note that the introduction 
of the Peano axioms for the type of individuals was only to simplify his exposition of the 
proof of incompleteness. Church, too, was interested in describing a development of the 
theory of numbers in T, and the paper [Church, 1940] gives some details of this. He works 
with a definition of natural numbers which identifies them with particular functions of type 
(11)(11) (abbreviated as 1'); for example, the number 3 is identified with the function 31, such 
that, for any function fll, (3, fl ) is the function xl (f 

l 

(f ii(f l xl))). This definition of 
natural numbers is adapted from the system of i calculus which Church used as a foundation 
for his work on undecidable theories. My decision to bring the Peano postulates for DI into 
T was specifically to create named objects in every type. 
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was stumped. Although I believed without question that there are choice 
functions which select an element from each non-empty set of real numbers, 
I saw no way to separate a single one of these choice functions from all the 
others, to serve as the denotation of the symbol t(0o)(0(0o)). 

Something about my failure to specify any one particular choice function 
for all non-empty sets of real numbers led me to think that perhaps the nature 
of the problem made it intrinsically unsolvable, and I began to wonder how 
I might possibly show that. Could I make precise what it might mean to say 
that it is "intrinsically impossible" to specify any particular choice function 
for non-empty sets of real numbers? No, I really couldn't. But I could make 
a precise weaker statement that would be pretty interesting, if I could prove 
it. 

To state this, we need a definition. Keep in mind that a wffM, without free 
variables denotes an element of Da whose determination depends on which 
choice-functions for non-empty subsets of Db are assigned as the denotations 
of the constants Ih(Ob) occurring in M,. Let us say that M, denotes an element 
of Da absolutely if it denotes that same element no matter which choice- 
functions are taken as the denotations of the constants Ib(0h) occurring in it. 
Then I made the following Conjecture. No choice-function for non-empty sets 
of real numbers is denoted absolutely by a wff M(01)(o(0l)) withoutfree variables. 

It must have been about mid-April, 1946, when I formulated this conjecture 
and set out to find a proof, intending this work to be the centerpiece of my 
dissertation. Mostly I worked in my head, with very few forays into the 
literature. One paper that I did read carefully, hoping to pick up ideas that 
would be relevant for my task, was Mostowski's paper on the independence 
of the axiom of choice for systems of set theory which admit "urelemente"; 
but in the end I did not find a way to use it. 

While the conjecture I sought to prove is formulated in terms of the absolute 
denotations of wffs, my plan of action was to start with an arbitrary, but 
fixed, assignment of denotations to the constants 1,(0a), and find out all I 
could about those elements of the type domains Da that were named by 
some wff of the language for T. I called these the nameable elements of the 
type hierarchy. 

Although I worked for a year at finding out something about these name- 
able functions, I had very little success. I must have had at least two results, 
though, because I remember being asked to talk about my work at a de- 
partment colloquium in September, 1946, and choosing the title "Nameable 
functions." 

I do remember one small result that I found pretty early, and since it is 
important for our story, I want to describe it here. 

For each type a, the nameable elements of type a form a certain subset, 
Dn, of the domain D,. We observe that any element of D,n is a function 
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that maps Db to Da, so the set of all domains Da itself forms a hierarchy of 
types. Looking at it, I thought I should make it a little neater by "trimming 
the fat" from each function in any domain D,. By this I meant that each 
element of Dhn has Dh, rather than D^, as its domain, so I thought I should 
replace each element f of D,,h by f*, the restriction of f to D^, and then 
work with the resulting sets, say Da, to get a neater representation of the 
hierarchy of types of nameable functions.28 

There was, however, a problem with this idea: What if the hierarchy 
contracted under the proposed reduction of the domains of functions? In 
other words, could there be distinct functions f and g in some Dah, such 
that f* = g*? After some worry, I realized that this could not happen. The 
reason is that if f and g are elements of Dn, there are wffs Fab and Gah 
which denote them respectively. Then, letting X0h be the wff xhb (Fahxb = 

GahXh), we see that if f $ g then Xo0 denotes a non-empty subset of Dh, so 
that Ih(oh)XOh denotes an element y of Dn for which fy 4- gy, showing that 
f* 7g*. 

With the realization that the passage from functions in Dn to those in 
D *, by reduction of domains, does not result in contraction, I had a self- 
contained hierarchy of type domains Dn,* which, in an obvious sense, is 
isomorphic to the hierarchy of nameable functions within the original do- 
mains Da.29 Henceforth I concentrated my effort to show the non-existence 
of absolutely nameable choice functions for non-empty sets of real numbers, 
by searching within the hierarchy of domains Dn*. 

March, 1947, arrived, the anniversary of my return to Princeton from 
war-time work, and I had gotten nowhere. I began increasingly to worry 
about how and when people would react to my continuing non-productive 
work. The National Research Council was supporting me with a fellowship; 
perhaps they would ask for a progress report before long. The Chairman of 
the Mathematics Department, Solomon Lefschetz, and my teacher, Church, 
must be expecting to hear from me about some concrete discoveries or 
directions for my dissertation, but I had not spoken to them about that 
subject for several months. And when my father asked how my work was 
proceeding during my visits to New York every few weeks, I had only one 
answer to repeat, "Well, I'm working hard!" 

One night I lay in my bed in the Graduate College going over these worries. 
They became increasingly intense; I did not see how I could deal with them. 
Suddenly I noticed that my arms and legs were rigid, my throat constricted, 
and I had the impression that I was on the verge of screaming! At once I 
realized that I could not continue as I had been doing. I decided that to 

280f course Do = Do and Dn = D1, so we may as well set D* = Do and Dn* = D1, too. 
29To be technically correct we should complicate our description of the domains Dn* by 

using recursion over type symbols, but for present purposes we overlook this. 
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avoid a breakdown I would discontinue my graduate study and try to find 
some sort of routine work. Lying in bed I composed letters to Professor 
Lefschetz and to my father, explaining why I was leaving Princeton, and I 
determined to write and send these in the morning.30 This process relaxed 
me, and I was able to fall asleep. 

The next morning I remembered clearly my decision taken the night before, 
and fully intended to carry it out. However, I saw that there was no immediate 
need to write and send off those letters, and as I had a new idea about 
nameable functions which looked rather interesting I thought I might as well 
check that out first, so I put the letters off for a day or two. 

A few weeks later I was sitting in the armchair in my study at the Graduate 
College, trying to "see" more clearly, for the hundredth time, the structure 
of the functions in the hierarchy of type-domains Da*. I recall that I was 
sitting in an unusual position, with my right leg thrown over the arm of the 
chair, and my head bent over the other arm of the chair. I thought that if 
I could only get a clearer picture of the interaction of the functions in the 
hierarchy that that might help me toward my goal of seeing that there cannot 
be absolute choice functions for non-empty sets of real numbers. 

Since each function in one of the domains D* has a name among the wffs 
of type ab, I would try to visualize one of these functions, f, by picturing, 
in my mind, a generic wff Fab that denotes it. Then, to visualize how f acts 
on some argument m from D^*, I would take a formula Mb denoting m, and 
get the formula FahMb with which to visualize the value of f at m, in Da*. 
But to see how this element of Da* was related to others, I would suppose 
that Fab had the form 2xhNa, and then apply the formal rule of ,-conversion 
to express FahMh by substituting Mh for free occurrences of xb in N,. 

As I struggled to see the action of functions more clearly in this way, I 
was struck by the realization that I had used i-conversion, one of the formal 
rules of inference in Church's deductive system for the language of the theory 
T. All of my efforts had been directed toward interpretations of the formal 
language, and now my attention was suddenly drawn to the fact that these 
were related to theformal deductive system for that language. In particular, I 
saw that using the symbol F for formal provability (or derivability) as usual, 
we can define for each type symbol a, a domain D' satisfying the following 
conditions: (i) Each cwff (closed wff, without free variables) M, denotes an 
element M' of D', and each element of D' is denoted by some cwff M,; (ii) 

30The letter to my father was especially difficult to compose, for he had praised my little 
school successes extravagantly ever since I was in first grade, and would bore friends and 
family members by repeating a roster of my "accomplishments" on every occasion. In fact, 
he had shown his high expectations for me at the time of my birth by choosing my middle 
name to be "Albert." He once told me that at that time (April 1921) the New York Times had 
run a series of articles publicizing Einstein's revolutionary theory of relativity, so my father 
decided to borrow Einstein's first name for his newborn son. 
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for any cwffFab, F,h is a function mapping D, into D'; and (iii) for any cwffs 
M, and N,, M' = N' if, and only if, F (M = Na). 

To accomplish this, we begin by defining D' for the case where a - 0 or 
a = 1, so that its elements are equivalence classes [M ] consisting of all cwffs 
Na such that k Ma = N,. Then, proceeding by induction and supposing 
that D' and DL have been defined, we put into D'b, for each cwff Fab, the 
function F'^ (from DO to D') such that, for any cwff Mb, F'bM, = (FahMh)'. 
Assurance that F'. is well defined by this equation comes from the induction 
hypothesis that D, satisfies (iii). Assurance that D'^ satisfies (iii) comes from 
the fact that if Fab and Gab are cwffs such that F' = G',h, then 

(Fah(lh(Oh) (Xh - (FahXb =GrahXb))))' = (Gah(lb(Oh)(Axb (FahXh=GabhX,))))'. 

Since D' satisfies (iii) by induction hypothesis, this gives 

F Fah(lh(Oh)(i Xh N (FahXh = GahXb))) = Gah(lh(Ob)(Xh 
- (FahXh = GabXb))). 

From this, by Axiom Schema 11h, we get F (Vxb)(Fhxh = Gaxh), and so 

by Axiom Schema 10b, - Fah = Gab, as desired. 
Notice how this last proof parallels the earlier proof that for f and g in 

Da, we have f = g if, and only if, f* = g*. I had put some effort into 
finding the earlier proof, so now I saw the facts about the domains D' very 
swiftly. 

The actions of the functions in D'h and D*T are so similar, that at first 
I thought that the two hierarchies might be identical. But as soon as I 
compared D6 with Do*, I saw that these were very different, and that this 
would produce differences in the two hierarchies at every level. The reason 
is that Dn* is simply Do (by Footnote 29), so has only two elements, while 
D6 has many elements. (In particular, if Mo is a Godel sentence such that 
neither - Mo nor K-~ Mo, then (01 = 01)', (~ 01 = 01)', and Mo are three 
distinct elements of Do.) 

As soon as I observed this, it occurred to me that if we were to add further 
cwffs of type 0 to the list of formal axioms, this would have the effect of 
reducing the number of elements in Do and that ultimately, by taking a 
maximal consistent set of axioms, the number of elements in Do would be 
two. At that point, if we were to start with the resulting hierarchy of domains 
D' and create corresponding hierarchies of domains DZ, and D2*, the three 
hierarchies would all be identical. 

In short, I had simultaneously formulated Theorem VI of my dissertation, 
and discovered its proof, in a period of less than half an hour, while trying to 
"see more clearly" the hierarchy of nameable type domains Da* with which 
I had been struggling for a year. 

Immediately I realized that my discovery provided a kind of completeness 
proof for a system very much like the system PM of type theory which G6del 
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swiftly. 
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reducing the number of elements in Do and that ultimately, by taking a 
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In short, I had simultaneously formulated Theorem VI of my dissertation, 
and discovered its proof, in a period of less than half an hour, while trying to 
"see more clearly" the hierarchy of nameable type domains Da* with which 
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Immediately I realized that my discovery provided a kind of completeness 
proof for a system very much like the system PM of type theory which G6del 
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had proved incomplete. The fear of having nothing to show for my year-long 
dissertation work was lifted from my spirit, and for a couple of days I was 
euphoric. Then I came back to look at my new-found completeness theorem 
and see if I could find something else to put into my dissertation with it. 

The very first question I asked myself was whether I could use the method 
that gave me completeness for type theory, to get a new proof of Godel's 
completeness for first-order logic. It seemed, at first, that there was no 
possibility to do so. The reason is that the axiom of choice, and in particular 
Church's neat formulation of it via the constants ia(Oa), played a crucial role 
in the proof for type theory, while in first order logic there is no axiom of 
choice, and no way to formulate one. 

I decided to analyze carefully the role of the axiom of choice in the com- 
pleteness proof, to see whether there was some other way of accomplishing 
it in first-order logic. The role that I saw first was performed in the proof by 
induction, sketched above, that domains D' satisfying conditions (i)-(iii), 
could be constructed. But when I wrote down details of the proof that 
the resulting hierarchy of domains D' satisfy the maximal consistent set of 
(added) axioms, I saw that the axiom of choice is needed there in a more 
general way, of which the earlier use is just a special case. The more general 
need is to show that whenever we have a wff Mo such that F- (3xb)Mo, then 
we also have F- (2xhMo) (i(ob)(Xx/Mo)). The fact that this condition holds is 
a direct consequence of having Axiom Schema 1 h in the deductive system 
that Church had set up for the theory T, as that schema is trivially equivalent 
to (3XhfohXh) D fOh(lth(OfOh). 

It did not take me very long to notice that in fact, the form of the wff 
following (xb^Mo) played no role in the completeness proof; it is only neces- 
sary to have some cwffNb such that H- (2xbMo)Nh holds if - (3xb)Mo holds. 
That immediately suggested to me the adjunction of new constants uh to the 
language of T to play the role of these needed cwffs Nh, and it was obvious 
that that process could be carried over to first-order logic. So I had my proof 
of Theorem I of my dissertation. 

The proof of Theorem I shows how, starting with a consistent set S of 
formal sentences of a first-order language, one can obtain a model M sat- 
isfying S by using newly adjoined individual constants for the elements of 
M. Conversely, starting with a structure M for a first-order language, the 
set of all sentences true of M is a (maximal) consistent set; and if we ad- 
join individual constants to the language to serve as names for the elements 
of A4, then for each true sentence of form 3xFx there will be a constant 
u such that Fu is true of M. Observing how one can go back and forth 
between consistent sets S of sentences and models of S, led me to my next 
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discoveries-Theorem II of my dissertation (extending Theorem I to non- 
denumerable languages), its important Corollary (compactness), and my 
proof of Theorem III (representing Boolean algebras). 

I had never encountered the concept of a Boolean algebra in courses on 
logic or algebra, but I heard about them at dinner one evening (early in 
1947) from a fellow graduate student, Gilbert Hunt, who later became a 
distinguished probabilist. He was very excited about Stone's representation 
theorem, which he'd just found, so I got some background about it by 
browsing in [Birkhoff, 1948] and then read [Stone, 1936]. It seems to me 
most likely that Stone's construction of maximal ideals in Boolean algebras 
was the inspiration for my construction of maximal consistent sets of cwffs, 
when I wrote up the completeness for T. However, it was not (consciously) 
in my mind at the moment when I thought of adding new formal axioms to 
T in order to reduce the number of equivalence classes in DQ to two; that 
thought came to me as part of a visualizing process, rather than a reasoning 
one. 

At any rate, soon after finding my proof of Theorem I and playing back- 
and-forth between maximal consistent sets (with witness-constants) and 
models, I noticed two facts. First, I saw that it would be natural to deal 
with languages having non-denumerably many constants. And second, I 
saw the compactness principle. However, it was only after I had found 
that I could accomplish something by using these facts, that I decided to 
incorporate them in my thesis by formulating Theorem II and its Corollary. 
The accomplishment consisted in my putting together the metamathematical 
proof of Stone's representation theorem that is given for Theorem III of the 
dissertation. 

After finding the idea of the proof of Theorem III, I went back and stated 
Theorem II and its corollary in order to justify some of the steps in the proof. 
Once I had written up Theorem II and its Corollary, I saw that I might as 
well use them to formulate Theorem IV, which gives a generalized condition 
for embedding one structure into another that possesses a given elementary 
property. 

The last application of compactness in my dissertation is Theorem V and 
its Corollaries I and II. These relate fields of characteristic 0 to fields of 
prime characteristic. The subject of characteristics was being considered in 
a course on rings and fields given by Emil Artin which I was attending in 
Spring 1947, which explains how I came to try out my new toy, compactness, 
in that direction. 

This completes my account of how I discovered a new proof of complete- 
ness and began to use it to obtain early results in model theory. To conclude 
this paper I shall set down, below, three observations. 
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A. In 1951 a second printing was made of [Gbdel, 1940], and the author 
took that occasion to append ten notes to the original text. Note 1 is to the 
effect that from the axiom that all sets are constructible (V = L), which he 
showed to be consistent with the other axioms of set theory, it follows that 
there is a projective well-ordering of the real numbers. It follows that the 
existence of a nameable choice function for non-empty sets of real numbers, 
which I was trying to prove false, is in fact consistent with what we now 
call the G6del-Bernays axioms for set theory. Had I realized this in 1946, 
I would probably never have started to work on the problem that led to my 
discoveries. 

After Paul Cohen proved the independence of the axiom of choice by 
introducing the method of forcing, that method was used by Solomon Fe- 
ferman to show that it is consistent with the axioms of set theory, including 
the axiom of choice, that there is no formula of the G6del-Bernays set theory 
theory which defines a well-ordering of the real numbers. From this it follows 
that the conjecture that I fruitlessly tried to prove true, is at least consistent. 
See [Feferman, 1965]. 

B. Writing this account of the origin of my completeness proofs has made 
me wonder about the task of historians of mathematics. In part they have to 
describe faithfully the order of mathematical discoveries and how these were, 
or were not, propagated, but in other part they must make hypotheses by 
means of which the observed facts are in some sense explained. I see that it 
would be exceedingly difficult for an historian who did not learn of the story 
I have told above, to formulate an accurate hypothesis of how I found my 
proof of completeness of first-order logic. And I recognize that part of the 
difficulty arises from the fact that my method of writing up the dissertation 
hides the process of discovery. 

For one thing, completeness for first-order logic comes in Part I of the 
dissertation, and completeness for the theory of types is given in Part III. 
It would be hard enough to guess that the latter proof was discovered first, 
and led me to the former proof-but I made it even harder, as I shall explain 
in a moment. But let me first say that my reason for treating first-order 
logic first, in the dissertation, was in part because the logical calculus was 
simpler and much more widely known. In other part, I felt that the result of 
completeness for type theory would be of much greater interest (insofar as 
it gave a semantical characterization of the formally undecidable sentences 
of that theory), so I wanted to make it the climax of the dissertation rather 
than put it first. 

As indicated, in addition to putting the first-discovered proof into Part 
III of the dissertation, I hid the discovery process in another way. Namely, 
in setting forth the formal language for type theory, in Part III, I deleted 
from Church's system the symbols 1b(oh) and the axiom of choice for which 
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they were used! Those symbols, and that axiom, which played such a 
quintessential role in the discovery process, were omitted in formulating 
Theorem VI, and the role of the symbols lb(ob) in forming "witnesses" for 
cwffs of the form 3xbMo was taken over by the adjunction of constants 
Ub, Ut, U ,... for each type symbol b. Again, there was a perfectly sound 
reason for making this change, namely, it strengthened the scope of Theorem 
VI, for in the altered form it implies that if the negation of the axiom of choice 
is consistent, then there is a general model for which the axiom of choice 
is false; and this would not follow from the original version of Theorem VI 
that I discovered. 

I did not altogether hide the symbols ib(ob) from the reader of my dis- 
sertation, for in passing from Theorem VI to Theorem VII, in which the 
generalized completeness theorem is extended to languages that can be non- 
denumerable or have additional constants, I cited Church's system in which 
the axiom schemas of description and choice are formulated with the sym- 
bols Ih(oh), as an example. With that example is a brief note to the effect 
that when this formulation of the axiom of choice is made, the adjunction of 
special constants Ub, u^, u,... for each type symbol b becomes unnecessary 
in the completeness proof, as their role can be taken over by the symbols 
bh(Oh); still, it would be a very sharp-eyed historian who could detect in that 

brief note appended to Theorem VII, the origin of the proof of Theorem I! 
Church's use of the symbols Ib(0b) led me to formulate my conjecture (about 

the non-existence of an absolutely definable choice function for non-empty 
sets of real numbers), which can really be formulated without special symbols 
as is done in [Feferman, 1965]. It was my year-long and fruitless effort 
to prove that conjecture which led me to my completeness proof, yet the 
conjecture is not mentioned anywhere in the dissertation. 

I do not believe that my crimes against historical discovery are isolated. 
It is my impression that many mathematical papers are written in a fashion 
that tends to obscure the process of discovery. Tendencies to find and exhibit 
neat proofs often result in the suppression of first proofs, and the thirst for 
general results can squeeze out special cases which may have led the way to 
discovery. 

What are historians of mathematics to do about mathematical discoveries 
for which the process of discovery is not revealed by the discoverer? I would 
like to suggest that historians take such discovery processes as challenges! 

Many papers dealing with the history of mathematics attempt to describe 
the development of some subject in a way that can be schematized by the 
diagram of a directed graph. The nodes, or vertices, of this graph, are the 
publications mentioned in the historical paper. A directed line-segment of 
the graph leads from vertex u to vertex w in case the author of publication w 
is thought to have been influenced by publication u in the course of writing 
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w. Normally, the way in which the author of publication w arrived at its 
ideas by combining those of u with those of other prior publications-that 
is, the process of discovery of the ideas of w is not treated. 

What I am suggesting is that in the diagram of a work on history of math- 
ematics, each vertex be expanded to a "black box" of the kind mentioned in 
the introduction of this paper. The directed line-segments leading into the 
node become the inputs of the box, those leading out of the node become the 
outputs. This proposal, if adopted, would signify a recognition that a com- 
plete historical account of some mathematical development should include 
not only a set of publications and their interrelations, but some account of 
the process of discovery (inside the "black box") that resulted in each of the 
publications cited. 

The existence of the publications and their interrelations can be confirmed 
by empirical evidence of the kind we now find in papers on the history of 
mathematics, but usually there is no (or very little) such evidence concerning 
the discovery process by which the findings of a mathematical publication 
were generated from its input ideas. How, then, is the historian to fill these 
gaps? 

It seems to me that the situation is analogous to what we find in various 
sciences where "black boxes" appear as components of physical, biolog- 
ical, or social processes. Perhaps the most familiar example is found in 
atomic physics, where observed facts are accounted for by a theory involving 
hypothesized objects entering hypothesized interactions that are subject to 
specified constraints. Such hypotheses are retained as long as they explain 
confirmed observations, and they are suspended when new observations lead 
to a search for new hypotheses. 

By seeking hypothetical explanations of the discovery process for impor- 
tant discoveries observable in publications, letters, and other accounts now 
employed, the history of mathematics would deepen its scientific character. 

C. It seems that a distinctive feature of my completeness proof for first- 
order logic, which distinguishes it from Godel's, is that when a consistent 
set of cwffs is given in one language, I proceed to an extended language in 
which new individual constants are adjoined. But in fact, something like 
that is implicitly present in Godel's proof, because he begins by reducing the 
problem of showing that an arbitrary cwff is either satisfiable or refutable, 
to the case of an arbitrary cwff that is in Skolem normalform. However, in 
a first-order language with some fixed finite set of predicate symbols, one 
cannot reduce every cwff to one in Skolem normal form without adding new 
predicate symbols. 

What is necessary in my proof is to start with a consistent set S of cwffs of 
a given language ?, and to extend S to a larger set S' having two properties: 
(i) S' is maximal consistent, and (ii) whenever S' F- 3xFx for some wff Fx, 
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set of cwffs is given in one language, I proceed to an extended language in 
which new individual constants are adjoined. But in fact, something like 
that is implicitly present in Godel's proof, because he begins by reducing the 
problem of showing that an arbitrary cwff is either satisfiable or refutable, 
to the case of an arbitrary cwff that is in Skolem normalform. However, in 
a first-order language with some fixed finite set of predicate symbols, one 
cannot reduce every cwff to one in Skolem normal form without adding new 
predicate symbols. 

What is necessary in my proof is to start with a consistent set S of cwffs of 
a given language ?, and to extend S to a larger set S' having two properties: 
(i) S' is maximal consistent, and (ii) whenever S' F- 3xFx for some wff Fx, 
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we also have S' F Fu for some individual constant u. In my dissertation 
I accomplished this by an infinite sequence of extensions of L, each such 
extension involving the adjunction of an infinite sequence of new constants. 
However, in teaching logic courses I discovered that it sufficed to adjoin 
a single infinite sequence of new constants to L, and then to form S' by 
starting with S and making a sequence of enlargements by a single cwff, 
interweaving cwffs of the form (3xFx) D Fu with cwffs selected from each 
pair (M, ~ M). This method has found its way into the literature through 
[Hasenjaeger, 1953]; see Footnote 3 of that work, and Footnote 513 in 
[Church, 1956], p. 311. 

In fact, in my later logic courses I found that the process of adding cwffs 
to S in order to achieve an S' satisfying condition (ii) can be described still 
more simply. Namely, it suffices to put into S' an element Gu (for some 
constant u) whenever Gx is a wff such that F- (3x)Gx. This is because, for 
any wff Fx, we may take Gx to be the formula (3xFx) D Fx, and easily 
show that - (3x)Gx holds. 

Added January 3, 1996. A manuscript of this paper was prepared in Fall, 
1993, and was sent to Professor Church. Arrangements were made to include 
the paper in two books, a Proceedings of the symposium at which it was 
presented (see Footnote 1), and a Festschrift for Church under preparation 
by two of his former students. Neither of these books materialized, for 
lack of timely agreements between editors and publishers. Church died in 
August 1995, and a few months later I submitted the paper to the Bulletin 
of Symbolic Logic. 
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